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Abstract. We systematically investigate the reflection and refraction of an electromagnetic wave between
two semi-infinite anisotropic magnetoelectric materials. Using the integral formulation of Hertz vectors and
the principle of superposition, we generalize the extinction theorem and derive the propagation character-
istics of wave. Applying the results obtained, we find a general origin of Brewster effect. We also show that,
through choosing appropriate material parameters, oblique or omnidirectional total transmission can occur
to TE and TM waves. Compared to the traditional method, the method used here discloses the underlying
mechanism of wave propagation between two arbitrary anisotropic materials and can be applied to other
problems of propagation.

PACS. 41.20.Jb Electromagnetic wave propagation; radiowave propagation – 42.25.Fx Diffraction and
scattering – 78.20.Ci Optical constants (including refractive index, complex dielectric constant, absorption,
reflection and transmission coefficients, emissivity)

1 Introduction

In classical electromagnetism there are two well-known ap-
proaches to the propagation of electromagnetic waves. The
first is to solve Maxwell’s equations with boundary condi-
tions and the second is to use integral equation treatment
with Ewald-Oseen extinction theorem [1]. Compared to
the former used traditionally, the latter can give much
deeper physical insights into the interaction of electro-
magnetic wave with material [1–5]. The integral equation
treatment plays a key role in light scattering theory [6,7].
Using the extinction theorem, the propagations of elec-
tromagnetic waves through a semi-infinite isotropic ma-
terial [3,8] and an isotropic slab [9] have been studied.
Recently the Brewster mechanism is explained for light
incident on an isotropic material with negative index [10].

In the previous works using the integral equation treat-
ment, most deal with the propagation of electromagnetic
waves incident from free space into isotropic materials.
However, the opposite situation from an material into free
space and especially the situation between two materials
is rarely studied. Then, whether the methods used in the
previous work are applicable to the two situations? To an-
swer this question, it is necessary to generalize the extinc-
tion theorem to the propagation between two materials.
On the other hand, a recent advent of artificial materi-
als, named as negative-refraction materials, arouses much
interest in the field of optics [11–26]. Since the negative-
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refraction materials are actually anisotropic magnetoelec-
tric, it is also necessary to extend the extinction theorem
from isotropic materials to anisotropic materials.

The purpose of this paper is to generalize the inte-
gral equation treatment to the propagation of electromag-
netic wave between two anisotropic magnetoelectric mate-
rials. Using the integral formulation of Hertz vectors and
the principle of superposition, we derive the properties of
propagation and generalize the extinction theorem, so that
the propagation between two arbitrary materials can be
investigated in a unified framework. We also give a gen-
eral explanation for the mechanism of Brewster effect. We
show that, through choosing appropriate material parame-
ters, oblique or omnidirectional total transmission [26–28]
can occur to TE and TM waves. The methods used do
not require boundary conditions, but can reveal the in-
teraction of light with materials, and avoid the difficulties
in integrations and complex calculations usually encoun-
tered in using extinction theorem [3,6]. So the methods
can be applied to other problems of wave propagation in
materials, such as scattering of light.

2 Reflection, refraction, and extinction
theorem

In this section, we first employ the formulation of Hertz
vector and the principle of superposition to deduce the
radiated fields generated by dipoles in the propagation of
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Fig. 1. Schematic diagram for the reflection and refraction of
TE waves at the interface between vacuum and an anisotropic
material. q1F and q1B are the forward and backward vacuum
wave vectors generated by the two materials, respectively. Both
of them should be canceled out, which correspond to the two
expressions of the extinction theorem. The dashed line denotes
the possible ray of negative refraction.

waves between two anisotropic dielectric-magnetic mate-
rials. Then we derive the real reflected and transmitted
fields and the Fresnel’s coefficients. At the same time, we
generalize the Ewald-Oseen extinction theorem. Through-
out the paper SI units are used.

Let us consider a monochromatic electromagnetic field
of Ei = Ei0 exp(iki ·r−iωt) and Hi = Hi0 exp(iki ·r−iωt)
incident from an anisotropic material into another one fill-
ing the semi-infinite space z > 0 with ki = kixx̂ − kiz ẑ.
The schematic diagram is in Figure 1. Since the mate-
rial responds linearly, all the fields have the same depen-
dence of exp (−iωt) which will be omitted subsequently.
Assume the reflected fields are Er = Er0 exp(ikr · r)
and Hr = Hr0 exp(ikr · r), and the transmitted fields
are Et = Et0 exp(ikt · r) and Ht = Ht0 exp(ikt · r).
For simplicity, the permittivity and permeability ten-
sors of materials are assumed diagonal simultaneously in
the principal coordinate system, εj = diag[εjx, εjy, εjz ],
µj = diag[µjx, µjy , µjz ], j = 1, 2.

Following the molecular optics theory, a bulk material
can be regarded as a collection of molecules (or atoms)
embedded in the vacuum. Driven by the external field, the
molecules are brought into oscillations and then secondary
waves are generated by the induced dipoles. The radiated
electric field by dipoles is decided by [1]

Erad = ∇(∇ · Πe) − ε0µ0
∂2Πe

∂t2
− µ0∇× ∂Πm

∂t
(1)

and the generated magnetic field is

Hrad = ∇(∇ ·Πm) − ε0µ0
∂2Πm

∂t2
+ ε0∇× ∂Πe

∂t
. (2)

Here Πe and Πm are the Hertz vectors,

Πe(r) =
∫

P(r′)
ε0

G(r − r′)dr′, (3)

Πm(r) =
∫

M(r′)G(r − r′)dr′. (4)

The dipole moment density of electric dipoles P and
that of magnetic dipoles M are related to the associ-
ated field as P = ε0χe · E, M = χm · H, where the
electric susceptibility χe = (ε/ε0) − 1 and the magnetic
susceptibility χm = (µ/µ0) − 1. The Green function is
G(r − r′) = exp (ik0|r − r′|)/(4π|r − r′|), where k0 is the
wave number in vacuum. In the first medium the dipoles
produce forward waves as well as backward waves. So, we
assume the associated dipole moment densities have the
following forms

P1 = P1F exp (ik1F · r) + P1B exp (−ik1B · r),
M1 = M1F exp (ik1F · r) + M1B exp (−ik1B · r), (5)

while P2 = P2F exp(ik2F ·r) and M2 = M2F exp(ik2F ·r)
in the second material, where F and B label the forward
and backward propagating waves, respectively. To deter-
mine the Hertz vectors we firstly represent the Green
function in the Fourier form [8]. Then, inserting it into
equation (3) and using the delta function definition and
contour integration method, the Hertz vectors can be
evaluated.

Following the principle of superposition, the fields in
the right region produced by the dipoles of the two media
add up to the transmitted field. Then, we have

Et = E1.right
rad + E2

rad, (6)

where the contribution from the first medium to the right
side, E1.right

rad , can be calculated as

E1.right
rad = − Q(q1F , P1F )

2q1z(q1z − k1Fz)
− Q(−b1B, P1B)

2b1z(b1z + k1Fz)
, (7)

the field radiated by the second medium itself, E2
rad, can

be obtained

E2
rad =

Q(k2F , P2F )
k2
2F − q2

2F

+
Q(q2F , P2F )

2q2z(q2z − k2Fz)
, (8)

and Q is an auxiliary function

Q(K, P ) ≡ − 1
ε0

[
K × K× P + (K2 − ε0µ0ω

2)P

+ ωµ0ε0K× M
]
exp (iK · r) (9)

where M = χm · {k × [P/(ε0χe)]/µ}/ω, qjF = kjFxx̂ +
qjz ẑ,q1B = k1Fxx̂− q1zẑ, q2

jz = k2
0 − k2

jFx,b1F = k1Bxx̂+
b1zẑ,b1B = k1Bxx̂ − b1zẑ, b2

1z = k2
0 − k2

1Bx, j = 1, 2. Sub-
stituting equations (7) and (8) into (6), and considering
the transmitted field with the form

Et =
P2F

ε0χ2e
exp (ik2F · r), (10)
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we come to the following conclusions by a self-consistent
analysis. (i) From terms with the phase factor exp(ik2F ·r)
in equation (6) yield k2F = kt and the dispersion relation

k2
tx

µ2zε2y
+

k2
tz

µ2xε2y
= ω2,

k2
tx

ε2zµ2y
+

k2
tz

ε2xµ2y
= ω2 (11)

for TE and TM waves, respectively. (ii) We know that q1F ,
q2F and b1B are all vacuum wave vectors. Since only k2F

appears in the final transmitted field, they all should be
extinguished. So we conclude that q1z = q2z = b1z and
k1Fx = k2Fx = −k1Bx. Then, comes naturally the Snell’s
law: k1F sin θi = k2F sin θt. At the same time,

Q(q1F , P2F )
q1z − k2Fz

− Q(q1F , P1F )
q1z − k1Fz

− Q(q1F , P1B)
q1z + k1Fz

= 0. (12)

Equation (12) is the generalized expression of the extinc-
tion theorem about the forward vacuum waves. It describes
how the radiation field produced by the dipoles of the first
medium is extinguished by the counterpart in the second
medium.

Now we study the fields in the first material. Similarly,
all the fields radiated by the whole space are superposed
to form the incident and reflected field

Ei + Er = E1
rad + E2.left

rad , (13)

where the field radiated by the first medium, E1
rad, can be

calculated out

E1
rad =

Q(k1F , P1F )
k2
1F − q2

1F

+
Q(q1B, P1F )

2q1z(q1z + k1Fz)

+
Q(−k1B, P1B)

k2
1B − b2

1B

+
Q(q1B , P1B)

2q1z(q1z − k1Bz)
, (14)

the contribution E2.left
rad from the second medium to the

left half-space can be obtained as

E2.left
rad = − Q(q2B, P2F )

2q2z(q2z + k2Fz)
. (15)

The incident and reflected fields may be written as

Ei =
P1F

ε0χ1e
exp (ik1F · r), Er =

P1B

ε0χ1e
exp (−ik1B · r),

(16)
respectively. Inserting equations (14), (15) and (16)
into (13) which must hold true for everywhere in the left
half-space, we come to the following conclusions. (i) From
terms with the phase factor exp (ik1F · r) or exp (ik1B · r)
in equation (13) follow that k1F = ki, k1B = kr and the
dispersion relation is like equation (11) after replacing the
subscripts 2 with 1 and t with i, respectively. (ii) q1B and
q2B are vacuum wave vectors and should be extinguished.
So, we have q1B = q2B and

Q(q1B , P1F )
q1z + k1Fz

+
Q(q1B, P1B)
q1z − k1Fz

− Q(q1B , P2F )
q1z + k2Fz

= 0, (17)

which is a new expression of the extinction theorem we
find. It shows how the backward vacuum field produced
by the dipoles of the second medium is extinguished by
that in the first medium.

Solving the set of equations (10), (12), (16), and (17),
we obtain the reflection coefficient RE = Er0/Ei0 and the
transmission coefficient TE = Et0/Ei0 for TE waves

RE =
µ2xkiz − µ1xktz

µ2xkiz + µ1xktz
, TE =

2µ2xkiz

µ2xkiz + µ1xktz
. (18)

Analogously, we can discuss TM waves and obtain similar
results after replacing µ with ε, considering the expres-
sions of E in equation (1) and H in equation (2).

Hence, we have obtained the generalized extinction
theorem, i.e. equations (12) and (17). Then, the propaga-
tion between two arbitrary materials can be studied in a
unified framework: under the action of external field in the
first material, the molecules in the two materials are driven
to oscillate and generate induced fields. The transmitted
wave is the result of superposition of the induced vacuum
field from the first medium and the fields radiated by the
induced dipoles in the second medium. The reflected wave
is the sum of the backward vacuum field from the second
medium and the backward fields induced by the dipoles
in the first medium. Note that equations (12) and (17)
should hold true for every point in the associated half-
spaces, which indicates that the cancellation of vacuum
waves occurs everywhere inside the materials.

3 Origin of Brewster effect

In what follows we apply the above conclusions to dis-
cussing the origin of Brewster effect.

If the power reflectivity |R|2 = 0, there is no re-
flected wave and the incident angle is called Brewster an-
gle [27,29]. From equations (17) follows the reflected field
magnitude

Er0 =
1

q1z + kizµ0/µ1x

{
q1B × [q1B × (χe1 ·Ei0)]

q1z + kiz

+
q1B × {χm1 · [µ0µ

−1
1 · (ki × Ei0)]}

q1z + kiz

+
q1B × [q1B × (χe2 · Et0)]

q1z + ktz

+
q1B × {χm2 · [µ0µ

−1
2 · (kt × Et0)]}

q1z + ktz

}
. (19)

In the large bracket of equation (19), the first two terms
denote the contributions (labeled as Ei

r0) from electric
and magnetic dipoles in the first medium to the reflected
field, respectively, while the last two are the contributions
(labeled as Et

r0) from the second medium. In order for
zero reflection, it requires that Ei

r0 +Et
r0 = 0, from which

follows the condition for Brewster effect: if the material
parameters satisfy

µ2zε2y − µ1zε1y

µ1zµ2z(µ2xε1y − µ1xε2y)
> 0, (20)
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Table 1. Existence conditions of Brewster angles for TE waves at the interface of two anisotropic media. Note: ∗ denotes either
of ±; ∀ indicates that Brewster angle exists for any parameter values.

µ1x µ1z ε1y µ2x µ2z ε2y Existence conditions

+ + + + + +
µ2x

µ1x
>

ε2y

ε1y
∩ ε2y

ε1y
>

µ1z

µ2z
,

µ2x

µ1x
<

ε2y

ε1y
∩ ε2y

ε1y
<

µ1z

µ2z

+ + + − + +
ε2y

ε1y
<

µ1z

µ2z

+ + + + − +
µ2x

µ1x
>

ε2y

ε1y

∗ ∗ ∗ + + − ×
+ + − ∗ ∗ ∗ ×

+ + + + − − ε2y

ε1y
>

µ1z

µ2z

+ + + − + − µ2x

µ1x
<

ε2y

ε1y

+ − + + − +
µ2x

µ1x
<

ε2y

ε1y
∩ ε2y

ε1y
>

µ1z

µ2z
,

µ2x

µ1x
>

ε2y

ε1y
∩ ε2y

ε1y
<

µ1z

µ2z

+ − + − + + ∀

− + + − + +
µ2x

µ1x
<

ε2y

ε1y
∩ ε2y

ε1y
>

µ1z

µ2z
,

µ2x

µ1x
>

ε2y

ε1y
∩ ε2y

ε1y
<

µ1z

µ2z

+ + + − − − µ2x

µ1x
>

ε2y

ε1y
∩ ε2y

ε1y
>

µ1z

µ2z
,

µ2x

µ1x
<

ε2y

ε1y
∩ ε2y

ε1y
<

µ1z

µ2z

+ − + + − − ∀

+ − + − + − µ2x

µ1x
<

ε2y

ε1y
∩ ε2y

ε1y
>

µ1z

µ2z
,

µ2x

µ1x
>

ε2y

ε1y
∩ ε2y

ε1y
<

µ1z

µ2z

+ − − − + +
µ2x

µ1x
<

ε2y

ε1y
∩ ε2y

ε1y
>

µ1z

µ2z
,

µ2x

µ1x
>

ε2y

ε1y
∩ ε2y

ε1y
<

µ1z

µ2z

Brewster effect will occur at the incident angle

θTE
B = cot−1

√
µ2

1x(µ2zε2y − µ1zε1y)
µ1zµ2z(µ2xε1y − µ1xε2y)

. (21)

If µ2x/µ1x = ε2y/ε1y ∩ ε2y/ε1y �= µ1z/µ2z, then θTE
B = 0;

When µ2x/µ1x �= ε2y/ε1y∩ε2y/ε1y = µ1z/µ2z, θTE
B = π/2;

If µ2x/µ1x = ε2y/ε1y ∩ ε2y/ε1y = µ1z/µ2z, then Brewster
effect will occur for any angle of incidence, which may
lead to important applications in optics. All the typical
and nontrivial sign combinations of εj and µj are shown in
Table 1. Note that, if the first medium is vacuum, Ei

r0 = 0,
then zero reflection can occur only when Et

r0 = 0. In other
words, the Brewster effect is because the contributions
from electric and magnetic dipoles of the medium to the
reflected field in vacuum add up to zero, which is in ac-
cordance with the conclusion in reference [10].

To illustrate the above conclusions, we calculate three
examples of wave propagations presented in Figure 2. The
power reflectivities of the three cases, which can be ob-
tained by the conventional Maxwell approach, are plotted
in (a), and the corresponding field magnitudes, which are
obtained by the method in the present paper, are plot-
ted in (b), (c), and (d), respectively. Because the first

medium is vacuum in (b), the reflected field is formed by
the radiated electric fields (Et

r0) generated by the second
mediums, then Brewster angle appears when Et

r0 = 0.
In (c), oblique total transmission appears [26,27] when
Ei

r0 + Et
r0 = 0 and the incident angle is Brewster an-

gle θTE
B(c). In (d), Ei

r0 + Et
r0 ≡ 0, so omnidirectional total

transmission [28] occurs. Comparing the results in (a) and
those in (b), (c), and (d), one can see that the results by
using the method in the present paper are in agreement
with those by the traditional approach. At the same time,
the former, i.e., (b), (c), and (d), can provide more micro-
scopic view of point on the mechanism of Brewster angle.

The previous results are based on the assumption of
plane wave. Since all physical sources of electromagnetic
waves produce radiation fields of finite spatial and tem-
poral extent, it is more essential to consider incident
waves as localized wave packets. Therefore, we also fol-
low the method in reference [18] to simulate in Figure 3
a beam Ei = Ei0

∫
dk⊥ei(k0+k⊥)·rf(k⊥) incident from an

anisotropic material to another where f(k⊥) is the Gaus-
sian modulation. In Figure 3, the two materials in (a)-(c)
and (d)-(f) correspond to those in (c) and (d) of Figure 2,
respectively. The oblique total negative refraction [26] ap-
pears in (b) and the omnidirectional total transmission
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Fig. 2. Reflectivity and reflected field magnitudes, normalized by the corresponding incident field magnitudes, for TE wave
incident incident on the interface between two anisotropic materials. The three curves of reflectivity in (a) correspond the case
in (b), (c), and (d), respectively. Since the first medium is vacuum in (b), the radiated electric fields (Et

r0) generated by the
second medium forms the reflected field, then Brewster angle appears when Et

r0 = 0. In (c), oblique total transmission appears
at θTE

B(c) and θc is the critical angle of incidence. In (d), Ei
r0 + Et

r0 ≡ 0, so omnidirectional total transmission occurs.

Fig. 3. (Color online) Reflection and refraction of a Gaussian beam incident on the interface between two anisotropic materials.
For (a)-(c) and (d)-(f) the two materials correspond to those in (c) and (d) of Figure 2, respectively. The phase and the energy
flow are refracted regularly and anomalously, respectively in (a)-(c), but are both refracted anomalously in (d)-(f). The oblique
total negative refraction appears in (b) and the omnidirectional total transmission occurs to (d)-(f).
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occurs to (d)-(f). The phase and the energy flow are re-
fracted regularly and anomalously, respectively in (a)-(c),
but are both refracted anomalously in (d)-(f). One can see
that beam simulations are in agreement with theoretical
analyses based on the assumption of plane wave. That in-
dicates that our method and conclusion are convincing.
Experimentally Brewster effect for TE waves has been re-
alized with metamaterials [30]. So, one can realize zero
reflection for TE and TM waves through choosing appro-
priate material parameters, which may be used to make
polarizers or beam splitters.

4 Conclusion

In summary, we carried out a systematical investigation on
the propagation of wave between two anisotropic magne-
toelectric materials. Utilizing Hertz vectors and the prin-
ciple of superposition, we derive the properties of propa-
gation and generalize the extinction theorem, so that the
propagation between two arbitrary materials can be in-
vestigated in a unified framework. We apply the results to
explaining the physical origin of Brewster effect. We show
that, through choosing appropriate material parameters,
oblique or omnidirectional total transmission can occur.
The methods do not require boundary conditions, but can
disclose the process of light propagation in materials on
a more fundamental level, and avoid complex calculations
usually encountered in using the extinction theorem. So
the methods can be applied to other problems of wave
propagation, such as scattering of light [6,7].
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